[算法][纠错][ECC]NAND FLASH ECC校验原理与实现, http://www.dragon-2008.com/circuit/Article/NAND_ECC.htm |
[算法][纠错][ECC]NAND FLASH ECC校验原理与实现, http://www.dragon-2008.com/circuit/Article/NAND_ECC.htm |
2007-04-29 02:11:27, Sun
Post
#1
|
|||||
猫猫猫 Group: Power Cat Posts: 626 Joined: 2006-12-8 Member No.: 2 |
ECC简介
由于NAND Flash的工艺不能保证NAND的Memory Array在其生命周期中保持性能的可靠,因此,在NAND的生产中及使用过程中会产生坏块。为了检测数据的可靠性,在应用NAND Flash的系统中一般都会采用一定的坏区管理策略,而管理坏区的前提是能比较可靠的进行坏区检测。 如果操作时序和电路稳定性不存在问题的话,NAND Flash出错的时候一般不会造成整个Block或是Page不能读取或是全部出错,而是整个Page(例如512Bytes)中只有一个或几个bit出错。 对数据的校验常用的有奇偶校验、CRC校验等,而在NAND Flash处理中,一般使用一种比较专用的校验——ECC。ECC能纠正单比特错误和检测双比特错误,而且计算速度很快,但对1比特以上的错误无法纠正,对2比特以上的错误不保证能检测。 ECC原理 ECC一般每256字节原始数据生成3字节ECC校验数据,这三字节共24比特分成两部分:6比特的列校验和16比特的行校验,多余的两个比特置1,如下图所示: ECC的列校验和生成规则如下图所示: 用数学表达式表示为: P4=D7(+)D6(+)D5(+)D4 P4`=D3(+)D2(+)D1(+)D0 P2=D7(+)D6(+)D3(+)D2 P2`=D5(+)D4(+)D1(+)D0 P1=D7(+)D5(+)D3(+)D1 P1`=D6(+)D4(+)D2(+)D0 这里(+)表示“位异或”操作 ECC的行校验和生成规则如下图所示: 用数学表达式表示为: P8 = bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)bit2(+)bit1(+)bit0(+)P8 …………………………………………………………………………………… 这里(+)同样表示“位异或”操作 当往NAND Flash的page中写入数据的时候,每256字节我们生成一个ECC校验和,称之为原ECC校验和,保存到PAGE的OOB(out-of-band)数据区中。 当从NAND Flash中读取数据的时候,每256字节我们生成一个ECC校验和,称之为新ECC校验和。 校验的时候,根据上述ECC生成原理不难推断:将从OOB区中读出的原ECC校验和新ECC校验和按位异或,若结果为0,则表示不存在错(或是出现了 ECC无法检测的错误);若3个字节异或结果中存在11个比特位为1,表示存在一个比特错误,且可纠正;若3个字节异或结果中只存在1个比特位为1,表示 OOB区出错;其他情况均表示出现了无法纠正的错误。 ECC算法的实现 代码 static const u_char nand_ecc_precalc_table[] =
{ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 }; // Creates non-inverted ECC code from line parity static void nand_trans_result(u_char reg2, u_char reg3,u_char *ecc_code) { u_char a, b, i, tmp1, tmp2; /* Initialize variables */ a = b = 0x80; tmp1 = tmp2 = 0; /* Calculate first ECC byte */ for (i = 0; i < 4; i++) { if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */ tmp1 |= b; b >>= 1; if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */ tmp1 |= b; b >>= 1; a >>= 1; } /* Calculate second ECC byte */ b = 0x80; for (i = 0; i < 4; i++) { if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */ tmp2 |= b; b >>= 1; if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */ tmp2 |= b; b >>= 1; a >>= 1; } /* Store two of the ECC bytes */ ecc_code[0] = tmp1; ecc_code[1] = tmp2; } // Calculate 3 byte ECC code for 256 byte block void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) { u_char idx, reg1, reg2, reg3; int j; /* Initialize variables */ reg1 = reg2 = reg3 = 0; ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; /* Build up column parity */ for(j = 0; j < 256; j++) { /* Get CP0 - CP5 from table */ idx = nand_ecc_precalc_table[dat[j]]; reg1 ^= (idx & 0x3f); /* All bit XOR = 1 ? */ if (idx & 0x40) { reg3 ^= (u_char) j; reg2 ^= ~((u_char) j); } } /* Create non-inverted ECC code from line parity */ nand_trans_result(reg2, reg3, ecc_code); /* Calculate final ECC code */ ecc_code[0] = ~ecc_code[0]; ecc_code[1] = ~ecc_code[1]; ecc_code[2] = ((~reg1) << 2) | 0x03; } // Detect and correct a 1 bit error for 256 byte block int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) { u_char a, b, c, d1, d2, d3, add, bit, i; /* Do error detection */ d1 = calc_ecc[0] ^ read_ecc[0]; d2 = calc_ecc[1] ^ read_ecc[1]; d3 = calc_ecc[2] ^ read_ecc[2]; if ((d1 | d2 | d3) == 0) { /* No errors */ return 0; } else { a = (d1 ^ (d1 >> 1)) & 0x55; b = (d2 ^ (d2 >> 1)) & 0x55; c = (d3 ^ (d3 >> 1)) & 0x54; /* Found and will correct single bit error in the data */ if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { c = 0x80; add = 0; a = 0x80; for (i=0; i<4; i++) { if (d1 & c) add |= a; c >>= 2; a >>= 1; } c = 0x80; for (i=0; i<4; i++) { if (d2 & c) add |= a; c >>= 2; a >>= 1; } bit = 0; b = 0x04; c = 0x80; for (i=0; i<3; i++) { if (d3 & c) bit |= b; c >>= 2; b >>= 1; } b = 0x01; a = dat[add]; a ^= (b << bit); dat[add] = a; return 1; } else { i = 0; while (d1) { if (d1 & 0x01) ++i; d1 >>= 1; } while (d2) { if (d2 & 0x01) ++i; d2 >>= 1; } while (d3) { if (d3 & 0x01) ++i; d3 >>= 1; } if (i == 1) { /* ECC Code Error Correction */ read_ecc[0] = calc_ecc[0]; read_ecc[1] = calc_ecc[1]; read_ecc[2] = calc_ecc[2]; return 2; } else { /* Uncorrectable Error */ return -1; } } } /* Should never happen */ return -1; } |
||||
|
|||||
2007-04-29 08:52:39, Sun
Post
#2
|
|
猫猫猫 Group: Power Cat Posts: 626 Joined: 2006-12-8 Member No.: 2 |
在上文的《NAND FLASH ECC校验原理与实现》中贴出了ECC算法源程序,在ECC算法源程序中有个nand_ecc_precalc_table,用于快速生成ECC校验和,该表实际上是按照《NAND FLASH ECC校验原理与实现》表中的ECC原理生成的,理解了ECC校验和生成原理,实际上生成该表也就不存在任何困难了。下面是生成该表的源程序:
代码 #define BIT0(x) ((x)&0x01)
#define BIT1(x) (((x)&0x02)>>1) #define BIT2(x) (((x)&0x04)>>2) #define BIT3(x) (((x)&0x08)>>3) #define BIT4(x) (((x)&0x10)>>4) #define BIT5(x) (((x)&0x20)>>5) #define BIT6(x) (((x)&0x40)>>6) #define BIT7(x) (((x)&0x80)>>7) void MakeEccTable() { int i,m; BYTE xData; m=0; for(i=0;i<256;i++) { xData=0; if(BIT0(i)^BIT2(i)^BIT4(i)^BIT6(i)) xData|=0x01; if(BIT1(i)^BIT3(i)^BIT5(i)^BIT7(i)) xData|=0x02; if(BIT0(i)^BIT1(i)^BIT4(i)^BIT5(i)) xData|=0x04; if(BIT2(i)^BIT3(i)^BIT6(i)^BIT7(i)) xData|=0x08; if(BIT0(i)^BIT1(i)^BIT2(i)^BIT3(i)) xData|=0x10; if(BIT4(i)^BIT5(i)^BIT6(i)^BIT7(i)) xData|=0x20; if(BIT0(i)^BIT1(i)^BIT2(i)^BIT3(i)^BIT4(i)^BIT5(i)^BIT6(i)^BIT7(i)) xData|=0x40; if(m==15) { TRACE("0x%02X,\n",xData); m=0; } else { TRACE("0x%02X,",xData); m++; } } } |
|
|
Lo-Fi Version | Time is now: 2024-12-26 14:17 |